3.71 \(\int \frac{\sqrt{e \cot (c+d x)}}{a+b \cot (c+d x)} \, dx\)

Optimal. Leaf size=302 \[ -\frac{\sqrt{e} (a-b) \log \left (\sqrt{e} \cot (c+d x)-\sqrt{2} \sqrt{e \cot (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}+\frac{\sqrt{e} (a-b) \log \left (\sqrt{e} \cot (c+d x)+\sqrt{2} \sqrt{e \cot (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}+\frac{2 \sqrt{a} \sqrt{b} \sqrt{e} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cot (c+d x)}}{\sqrt{a} \sqrt{e}}\right )}{d \left (a^2+b^2\right )}+\frac{\sqrt{e} (a+b) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} d \left (a^2+b^2\right )}-\frac{\sqrt{e} (a+b) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}+1\right )}{\sqrt{2} d \left (a^2+b^2\right )} \]

[Out]

(2*Sqrt[a]*Sqrt[b]*Sqrt[e]*ArcTan[(Sqrt[b]*Sqrt[e*Cot[c + d*x]])/(Sqrt[a]*Sqrt[e])])/((a^2 + b^2)*d) + ((a + b
)*Sqrt[e]*ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*(a^2 + b^2)*d) - ((a + b)*Sqrt[e]*ArcTa
n[1 + (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*(a^2 + b^2)*d) - ((a - b)*Sqrt[e]*Log[Sqrt[e] + Sqrt[e
]*Cot[c + d*x] - Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*(a^2 + b^2)*d) + ((a - b)*Sqrt[e]*Log[Sqrt[e] + Sqr
t[e]*Cot[c + d*x] + Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*(a^2 + b^2)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.375615, antiderivative size = 302, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 11, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.44, Rules used = {3572, 3534, 1168, 1162, 617, 204, 1165, 628, 3634, 63, 205} \[ -\frac{\sqrt{e} (a-b) \log \left (\sqrt{e} \cot (c+d x)-\sqrt{2} \sqrt{e \cot (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}+\frac{\sqrt{e} (a-b) \log \left (\sqrt{e} \cot (c+d x)+\sqrt{2} \sqrt{e \cot (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}+\frac{2 \sqrt{a} \sqrt{b} \sqrt{e} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cot (c+d x)}}{\sqrt{a} \sqrt{e}}\right )}{d \left (a^2+b^2\right )}+\frac{\sqrt{e} (a+b) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} d \left (a^2+b^2\right )}-\frac{\sqrt{e} (a+b) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}+1\right )}{\sqrt{2} d \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[e*Cot[c + d*x]]/(a + b*Cot[c + d*x]),x]

[Out]

(2*Sqrt[a]*Sqrt[b]*Sqrt[e]*ArcTan[(Sqrt[b]*Sqrt[e*Cot[c + d*x]])/(Sqrt[a]*Sqrt[e])])/((a^2 + b^2)*d) + ((a + b
)*Sqrt[e]*ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*(a^2 + b^2)*d) - ((a + b)*Sqrt[e]*ArcTa
n[1 + (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*(a^2 + b^2)*d) - ((a - b)*Sqrt[e]*Log[Sqrt[e] + Sqrt[e
]*Cot[c + d*x] - Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*(a^2 + b^2)*d) + ((a - b)*Sqrt[e]*Log[Sqrt[e] + Sqr
t[e]*Cot[c + d*x] + Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*(a^2 + b^2)*d)

Rule 3572

Int[Sqrt[(a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(
c^2 + d^2), Int[Simp[a*c + b*d + (b*c - a*d)*Tan[e + f*x], x]/Sqrt[a + b*Tan[e + f*x]], x], x] - Dist[(d*(b*c
- a*d))/(c^2 + d^2), Int[(1 + Tan[e + f*x]^2)/(Sqrt[a + b*Tan[e + f*x]]*(c + d*Tan[e + f*x])), x], x] /; FreeQ
[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{e \cot (c+d x)}}{a+b \cot (c+d x)} \, dx &=\frac{\int \frac{b e+a e \cot (c+d x)}{\sqrt{e \cot (c+d x)}} \, dx}{a^2+b^2}-\frac{(a b e) \int \frac{1+\cot ^2(c+d x)}{\sqrt{e \cot (c+d x)} (a+b \cot (c+d x))} \, dx}{a^2+b^2}\\ &=\frac{2 \operatorname{Subst}\left (\int \frac{-b e^2-a e x^2}{e^2+x^4} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}-\frac{(a b e) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-e x} (a-b x)} \, dx,x,-\cot (c+d x)\right )}{\left (a^2+b^2\right ) d}\\ &=\frac{(2 a b) \operatorname{Subst}\left (\int \frac{1}{a+\frac{b x^2}{e}} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}+\frac{((a-b) e) \operatorname{Subst}\left (\int \frac{e-x^2}{e^2+x^4} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}-\frac{((a+b) e) \operatorname{Subst}\left (\int \frac{e+x^2}{e^2+x^4} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}\\ &=\frac{2 \sqrt{a} \sqrt{b} \sqrt{e} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cot (c+d x)}}{\sqrt{a} \sqrt{e}}\right )}{\left (a^2+b^2\right ) d}-\frac{\left ((a-b) \sqrt{e}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{e}+2 x}{-e-\sqrt{2} \sqrt{e} x-x^2} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}-\frac{\left ((a-b) \sqrt{e}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{e}-2 x}{-e+\sqrt{2} \sqrt{e} x-x^2} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}-\frac{((a+b) e) \operatorname{Subst}\left (\int \frac{1}{e-\sqrt{2} \sqrt{e} x+x^2} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}-\frac{((a+b) e) \operatorname{Subst}\left (\int \frac{1}{e+\sqrt{2} \sqrt{e} x+x^2} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}\\ &=\frac{2 \sqrt{a} \sqrt{b} \sqrt{e} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cot (c+d x)}}{\sqrt{a} \sqrt{e}}\right )}{\left (a^2+b^2\right ) d}-\frac{(a-b) \sqrt{e} \log \left (\sqrt{e}+\sqrt{e} \cot (c+d x)-\sqrt{2} \sqrt{e \cot (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}+\frac{(a-b) \sqrt{e} \log \left (\sqrt{e}+\sqrt{e} \cot (c+d x)+\sqrt{2} \sqrt{e \cot (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}-\frac{\left ((a+b) \sqrt{e}\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}+\frac{\left ((a+b) \sqrt{e}\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}\\ &=\frac{2 \sqrt{a} \sqrt{b} \sqrt{e} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{e \cot (c+d x)}}{\sqrt{a} \sqrt{e}}\right )}{\left (a^2+b^2\right ) d}+\frac{(a+b) \sqrt{e} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}-\frac{(a+b) \sqrt{e} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}-\frac{(a-b) \sqrt{e} \log \left (\sqrt{e}+\sqrt{e} \cot (c+d x)-\sqrt{2} \sqrt{e \cot (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}+\frac{(a-b) \sqrt{e} \log \left (\sqrt{e}+\sqrt{e} \cot (c+d x)+\sqrt{2} \sqrt{e \cot (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}\\ \end{align*}

Mathematica [C]  time = 0.275518, size = 226, normalized size = 0.75 \[ \frac{\sqrt{e \cot (c+d x)} \left (-8 a \cot ^{\frac{3}{2}}(c+d x) \text{Hypergeometric2F1}\left (\frac{3}{4},1,\frac{7}{4},-\cot ^2(c+d x)\right )+24 \sqrt{a} \sqrt{b} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\cot (c+d x)}}{\sqrt{a}}\right )+3 \sqrt{2} b \log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )-3 \sqrt{2} b \log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )+6 \sqrt{2} b \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )-6 \sqrt{2} b \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )\right )}{12 d \left (a^2+b^2\right ) \sqrt{\cot (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[e*Cot[c + d*x]]/(a + b*Cot[c + d*x]),x]

[Out]

(Sqrt[e*Cot[c + d*x]]*(6*Sqrt[2]*b*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]] - 6*Sqrt[2]*b*ArcTan[1 + Sqrt[2]*Sqr
t[Cot[c + d*x]]] + 24*Sqrt[a]*Sqrt[b]*ArcTan[(Sqrt[b]*Sqrt[Cot[c + d*x]])/Sqrt[a]] - 8*a*Cot[c + d*x]^(3/2)*Hy
pergeometric2F1[3/4, 1, 7/4, -Cot[c + d*x]^2] + 3*Sqrt[2]*b*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]
 - 3*Sqrt[2]*b*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]))/(12*(a^2 + b^2)*d*Sqrt[Cot[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 0.043, size = 417, normalized size = 1.4 \begin{align*} -{\frac{b\sqrt{2}}{4\,d \left ({a}^{2}+{b}^{2} \right ) }\sqrt [4]{{e}^{2}}\ln \left ({ \left ( e\cot \left ( dx+c \right ) +\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) \left ( e\cot \left ( dx+c \right ) -\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) ^{-1}} \right ) }-{\frac{b\sqrt{2}}{2\,d \left ({a}^{2}+{b}^{2} \right ) }\sqrt [4]{{e}^{2}}\arctan \left ({\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ) }+{\frac{b\sqrt{2}}{2\,d \left ({a}^{2}+{b}^{2} \right ) }\sqrt [4]{{e}^{2}}\arctan \left ( -{\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ) }-{\frac{ae\sqrt{2}}{4\,d \left ({a}^{2}+{b}^{2} \right ) }\ln \left ({ \left ( e\cot \left ( dx+c \right ) -\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) \left ( e\cot \left ( dx+c \right ) +\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{e}^{2}}}}}-{\frac{ae\sqrt{2}}{2\,d \left ({a}^{2}+{b}^{2} \right ) }\arctan \left ({\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ){\frac{1}{\sqrt [4]{{e}^{2}}}}}+{\frac{ae\sqrt{2}}{2\,d \left ({a}^{2}+{b}^{2} \right ) }\arctan \left ( -{\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ){\frac{1}{\sqrt [4]{{e}^{2}}}}}+2\,{\frac{aeb}{d \left ({a}^{2}+{b}^{2} \right ) \sqrt{aeb}}\arctan \left ({\frac{\sqrt{e\cot \left ( dx+c \right ) }b}{\sqrt{aeb}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c)),x)

[Out]

-1/4/d/(a^2+b^2)*b*(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/
(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))-1/2/d/(a^2+b^2)*b*(e^2)^(1/4)*2^(1/2)*arc
tan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)+1/2/d/(a^2+b^2)*b*(e^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1
/4)*(e*cot(d*x+c))^(1/2)+1)-1/4/d*e/(a^2+b^2)*a/(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c)
)^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))-1/2/d*e/(a^2
+b^2)*a/(e^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)+1/2/d*e/(a^2+b^2)*a/(e^2)^(1/4)
*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)+2/d*e*b*a/(a^2+b^2)/(a*e*b)^(1/2)*arctan((e*cot(d
*x+c))^(1/2)*b/(a*e*b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e \cot{\left (c + d x \right )}}}{a + b \cot{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))**(1/2)/(a+b*cot(d*x+c)),x)

[Out]

Integral(sqrt(e*cot(c + d*x))/(a + b*cot(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e \cot \left (d x + c\right )}}{b \cot \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c)),x, algorithm="giac")

[Out]

integrate(sqrt(e*cot(d*x + c))/(b*cot(d*x + c) + a), x)